Experimental Heat Transfer Enhancement in Single-phase Liquid Microchannel Cooling with Cross-flow Synthetic Jet
نویسندگان
چکیده
The present study experimentally investigated a new hybrid cooling scheme by combination of a microchannel heat sink with a micro-synthetic jet actuator. The heat sink consisted of a single rectangular microchannel measured 550 μm wide, 500 μm deep and 26 mm long. The synthetic jet actuator with a 100 μm diameter orifice was placed right above the microchannel and 5 mm downstream from the channel inlet. Micro jet is synthesized from the fluid flowing through the microchannel. Periodic disturbance is generated when the synthetic jet interacts with the microchannel flow. Heat transfer performance is enhanced as local turbulence is generated and propagated downstream the microchannel. The scale and frequency of the disturbance can be controlled by changing the driving voltage and frequency of the piezoelectric driven synthetic jet actuator. The effects of synthetic jet on microchannel heat transfer performance were studied based on the microchannel flow Reynolds number, the jet operating voltage and frequency, respectively. It shows that the synthetic jet has a greater heat transfer enhancement for microchannel flow at lower Reynolds number. It also shows that the thermal effects of the synthetic jet are functions of the jet driving voltage and frequency. We obtained around 42% heat transfer enhancement for some test cases, whereas the pressure drop across the microchannel increases very slightly. The paper concludes that the synthetic jet can effectively enhance single-phase liquid microchannel heat transfer performance and would have more promising enhancements if multi-jets are applied along the microchannel.
منابع مشابه
Experimental Heat Transfer Enhancement for Single Phase Liquid Micro-Channel Cooling Using A Micro-Synthetic Jet Actuator
The present work experimentally investigates the thermal effects of a synthetic jet actuator on the heat transfer performance of single-phase flow confined in a microchannel heat sink. The heat sink consisted of a single rectangular microchannel 500 μm wide, 300 μm deep and 26 mm long. Deionized water was employed as the cooling fluid. A synthetic jet actuator with a 100 μm diameter orifice was...
متن کاملThree-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach
In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...
متن کاملExperimental study of convective heat transfer coefficient of MgO nanofluid in a cylindrical microchannel heat sink
Convective heat transfer of MgO-water nanofluid in a microchannel heat sink is experimentally investigated in various concentrations of 0.01, 0.05, 0.1, and 0.6 wt%. The microchannel consisted of 48 parallel rectangular cross section channels with the height of 800 µm, width of 524 µm and length of 52 mm. A well stability duration (ca. 1 month) was resulted by a 180 min ultra-sonication of the ...
متن کاملA NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN MICROCHANNELS (RESEARCH NOTE)
Three-dimensional simulations of the single-phase laminar flow and forced convective heat transfer of water in microchannels with small rectangular sections having specific hydraulic diameters and distinct geometric configurations were investigated numerically. The numerical results indicated that the laminar heat transfer was to be dependent upon the aspect ratio and the ratio of the hydraulic...
متن کاملTwo-phase Microchannel Heat Sinks: Theory, Applications, and Limitations
Boiling water in small channels that are formed along turbine blades has been examined since the 1970s as a means to dissipating large amounts of heat. Later, similar geometries could be found in cooling systems for computers, fusion reactors, rocket nozzles, avionics, hybrid vehicle power electronics, and space systems. This paper addresses (a) the implementation of two-phase microchannel heat...
متن کامل